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Note 

Numerical Solution of the Shallow Water Equations 

The hyperbolic quasi-linear system of equations governing the flow of an ideal 
incompressible fluid in a gravitational field is known as the shallow water 
equations. In the solution of these equations discontinuities arise when bores or 
hydraulic jumps are present. An example of such a phenomenon is provided by the 
problem of the breaking of a dam [ 11, and is also analogous to the Riemann 
problem of one-dimensional gas dynamics [2]. Several numerical methods have 
been proposed for the numerical solution of these equations [3X5]. In the most 
recent of these methods [S], a langrangian method was developed for the shallow 
water equations based on a Voronoi mesh. Although the method gave good 
agreement with the theoretical solution for the rarefaction and shock waves 
positions and speeds, it showed an unphysical overshoot behind the shock and 
unphysical oscillations in the constant state near the rarefaction wave [IS]. In 
Ref. [4], more accurate results have been presented using a Random Choice 
Method. 

In view of the importance of this problem, and of the extensive literature devoted 
to the subject, it is purpose of the present note to apply a much simpler algorithm 
based on shape preserving splines [6, 71 for the solution of this problem. 

Shape-preserving interpolants based on Bernstein polynomials have been given 
increasing attention in computational geometry. Btzier [X] has developed and 
described the mathematical basis for a successful system for the design of curves 
and surfaces. An alternative development, in which the Bezier method emerges as 
an application to the Bernstein polynomials approximation, and the extension of 
the Bizier technique to splines have been described in Refs. 19, 101. The application 
of shape preserving splines based on Bernstein polynomials for the numerical 
solutions of differential equations has been presented in [6, 71. It is the purpose of 
the present note to apply the algorithm developed in 16, 71 for the solution of the 
shallow water equations. The details of this algorithm have been given in [6, 71 and 
will not be repeated here. 

We are dealing essentially with the shallow water equations in one space dimen- 
sion. These equations are given by [ 1,4, 51: 

(1) 

(2) 

240 
0021-9991/86 $3.00 
CopyrIght 0 1986 by Academic Press, Inc 
All rights of reproduction m any form reserved 



SHALLOW WATER EQUATIONS 241 

where g = 9.8066 m/set’, h and u are the depth and the fluid velocity, respectively. 
These equations are solved for the dam-breaking problem [l] with the initial con- 
ditions 

u(x, 0) = 0.2667 m/set x < 0 @a) 

= 1.6 m/set, x > 0, (3b) 

h(x, 0) = 10.8 m x < 0 (da) 

= 1.8 m, x > 0. (4b) 

The initial conditions are shown in Figs. la and 2a for h(x, 0) and u(x, 0) respec- 
tively. 

At any time t, the exact solution consists of four regions, where the height of the 
fluid h(x, t) is given by 

h(x, t) = 1.8 m x > 10.7t 

= 4.716 m 0.45t < .Y < 10.7t 

(5a) 

(5b) 

=& (20.8401 -$I - 10.02t < x < 0.45t (5c) 

= 10:s m x < - 10.02t. 
(5d) 

So a shock wave propagates in the positive direction with a velocity 10.7 m/set 
[l], and a rarefaction wave propagates in the negative direction with a velocity 
- 10.02 m/set. 

Equations (1) and (2) are first modified using the Riemann invariants, which are 
constant quantities along characteristic lines. We obtain the following system of 
equations: 

where 

and 

(;+v+$r+=o. 

($+v-f) up =o, 

(6) 

V+ =U+C, (9) 

V- =u-cc, (10) 

u, =u+2c, (11) 

up =u-2c. (12) 

The numerical scheme to solve Eqs. (6) and (7) is the following. We use a two- 
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FIG. 1. Profile of the height h(x, t) as a function of x at (a) t =O, (b) t= 100, (c) f = 200, 
(d) r = 300, (e) t = 400, ( f ) t = 450 sec. The distance x is in km. 



SHALLOW WATER EQUATIONS 243 

_-, 

66-b 

5s 

50. 

42- 

=34- 

26- 

IS- 

lo- 

OZ,, 00 50 

66-d 

58. 

50- 

42. 

=34- 

26. 

FIG. 2. Profile of the fluid velocity u(x, r) as a function of x at (a) t = 0, (b) t = 100, (c) t = 200, 
(d) t = 300, (e) I = 400, (f) t = 450 sec. The distance n is in km. 



244 MAGDI M. SHOUCRI 

step technique, and calculate first for a time step At/2 (the star denotes the value at 
half time step): 

.:=,,!,-u+$), 

u* =lL (x-u $). (14) 

We use U*, and U? to calculate U* and c* from Eq. (11) and (12), and u*, and ul: 
from Eqs. (9) and (10). We use these values to advance U, and U_ for a full 
time step by calculating U+(x - u*, At) and U_ (x - v? At). The different shifted 
values are calculated by a simple interpolation using the second degree Bernstein 
polynomial presented in [6, 71. 

In Ref. [5], the following parameters were used: At = 0.2 set and Ax = 5 meters 
(initially). In the present calculation we use At = 1.2 set and Ax = 20 m. The time 
history is shown in Fig. (1) at the same time as in Ref. [S]. The curves are smooth, 
and only about two points are appearing on the vertical line of the shock (the 
dimension of these points is slightly exagerated to make them visible). The position 
of the rarefaction waves agrees very well with the theory. The level of the constant 
state behind the shock is 4.87 m, for a theoretical value of 4.71 m (Eq. (5b)). The 
shock front however appears to be propagating at a velocity of 8.6 m/set, slightly 
lower than the theoretical value of 10.7 mjsec (about 20% slower). This is a minor 
inconvenience if we take into consideration that the algorithm is absolutely stable 
and the otherwise very good agreement of the other parameters with the predicted 
theoretical values. Only 375 iterations were needed to reach the maximum time of 
450 set in Fig. 1. 

For the calculation of the fluid velocity u(x, t), Fig. 2 show the results at the sme 
time as those of Fig. 1. The value of U(X, t) at the constant state behind the shock is 
7.02 m/set, for a theoretical value of 7.24 m/set [ 11. The agreement is quite good. 

Finally, we developed a second algorithm for the direct solution of Eqs. (1 ), (2) 
without using the Riemann invariants. This second algorithm uses a method of frac- 
tional step similar to what is described in [ 111. To advance the equations in time 
for a time step At, we first integrate for a half time step At/2 the equations 

;+$Lo, 
2X 

g+ug=o, 

the results are used to advance the following equations for a full time step: 

(15) 

(16) 

(17) 

(18) g+gg=o. 
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Then Eqs. (15), (16) are advanced again for a half time step Af/2. The integration of 
Eqs. (15), (16) is effected by calculating h* and U* by shifting the value as indicated 
in Eqs. (13), (14). The integration of Eqs. (17) and (18) for a full time step is effec- 
ted using the following shift operator: 

h(x, t) = $ [h(x + wt) + h(x - wt) - pt(x + Wf) + /3u(x - wt)], (19) 

u(x, t) = + [u(x + Wf) + 24(x - wt) - h(x + wtyp + h(x - wt)//l], (20) 

where 

H>=&jy p=&. (21) 

Again all the shifts are effected using the same algorithm as in Ref. [6, 73. The 
results are identic to those presented in Figs. 1 and 2. However with the present 
method, a smaller time-step and a liner grid was needed to obtain results of the 
same quality of those presented in Figs. 1, 2 (typically dt = 0.2 and Ax = 5 m in the 
present method). 

To conclude, a simple algorithm based on a shape preserving spline using a 
second degree Bernstein polynomial [6, 71 has been used to solve numerically the 
shallow water equations. The codes developed are stable. With the present 
parameters, the present method appears also computationally fast. It shares the 
important advantage of the Random Choice Method for the shock wave: absence of 
overshooting or undershooting at the shock discontinuity. 
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